(Updated 10/21/2021) Sleuthing out who built the first of any new significant automotive development can be a fraught undertaking. When I wrote up the remarkable 1946 Kaiser articulated bus, I really thought it was the first of its kind. Well, in some ways it still is, in terms of an IC engine powered highway coach. But there were two previous pioneers of the articulated bus, for transit use. Somewhat oddly though, the first one, the 1938 Twin Coach (above) was only articulated vertically. But in another (presumably) pioneering way, it had a diesel-electric propulsion system, which of course made it also very suitable to be used as a trolley-bus with overhead lines, or to operate in either configuration.
A similar transit bus that also only articulated vertically was first built in Milan, Italy in 1937, one year earlier, the Alfa Romeo 110 AM Macchi. It’s unknown if Twin Coach got the idea from that or it was just a coincidence. More on that and the similar Isotta Fraschini TS40 further down.
Let’s first take a look at this remarkable invention by Fageol, at their Twin Coach division. In the 1930s, during the Depression, there was a need for relatively low-cost transit solutions that didn’t require laying more expensive track. I’m going to just copy the twin Coach press release from 1938, via coachbuilt.com:
“Kent, Ohio, June 15—The largest, capacity passenger vehicle for public carrier service, without the use of tracks, has been announced this month by Frank R. and William B. Fageol, President and Vice President, respectively, of the Twin Coach Company of this city. The vehicle seats 58 passengers on a single deck, and will transport readily, a passenger load of 120, including standees. The unit is designed to operate as an electric trolley coach or by Diesel-electric propulsion. The vehicle has four axles, eight wheels and bears its lead on 12 tires, the four center wheels taking dual rubber equipment. It weighs 27,500 pounds and is known as the Super-Twin.
“This unit will be capable of 50 miles per hour top speed, and, therefore, in regular schedule traffic, should have no difficulty in maintaining average schedule speed of 13 to 14 miles per hour, which is within one or two miles per hour of the average speed on principal subway lines.
apparently there were both three and four axle versions
“The new vehicle, on the fiftieth anniversary of the operation of electric trolley cars operating upon steel rails in the United States, immediately becomes a threat to continued large city street car operation, because it is the first seemingly practical unit created as a rubber tired public carrier capable of equaling the capacity of the largest city street cars, and at the same time, being able to turn on a radius no greater than the many 35-passenger gasoline coaches already in service in great numbers in this country. This is done by means of the synchronous steering of the front and rear wheels. The four wheels at the center of the job operate on the principle adapted to the many six-wheel vehicles already in use.
this is a later version, but it shows how it was articulated vertically
“Because of its 47 foot length, the body is hinged perpendicularly at the center, and the space covered by a newly developed flexible rubber hood, the perpendicular articulation allowing it to take with ease, bridge, viaduct and other sharp grades oftentimes found within the confines of the metropolitan area. There is no horizontal articulation and the width of the vehicle may be made to equal that of the large capacity trolley cars. The floor has no obstructions of any kind.
“As in a trackless trolley coach, the propulsion is through two 125-horse-power electrical motors placed under the floor of each body unit and driving into the two center axles. The first vehicle for practical demonstrating purposes is a Diesel-Electric vehicle with 175-horsepower Hercules Diesel motor with electric generator in the rear compartment, supplying current to the two electric motors located under the floor adjacent to the two center axles. The electrical equipment has been supplied by General Electric Company.
“The oil-electric propulsion equipment is generally the same as that used to run the Diesel-Electric Zephyr and other crack high speed transcontinental trains. It is much easier for the operator to handle than the ordinary bus on account of the simplicity of controls which consist of a reversing lever to get forward and reverse directions and a foot accelerating pedal which operates the same as your automobile. As you press the pedal down it adds more fuel to the Diesel motor, thereby causing the motor to revolve at higher speed and it being connected to the electric generator, there is an immediate increase of motive power from the generator to the motor. In other words, the action on the propulsion motor, when the fuel accelerator is pushed down, is similar to the result when the motorman on a street car turns his controller around. The further he goes with the handle, the more electricity is put in the motors and thus the increase in speed.
“The Diesel motor differs from the gas motor in that it has no spark plugs, therefore, no electric ignition. The fuel used is what is known as distillate or oil similar to that used in oil furnaces.
“The ignition of the fuel is brought about by high compression temperatures and through properly governed and timed oil injection into the cylinders.
“The springing of the job is taken care of by a newly designed type of cantilever spring giving the rider the impression of that of a boat rather than the short, quick impacts of urban rail transportation.
“Control of the new vehicle by the operator is exactly the same as on a conventional motor coach or trolley coach. The steering of the front and rear wheels is accomplished through linkage and the use of air which automatically supplements the manual effort on the driver’s wheel, and trolley buses are in use on urban operating systems, a complete transition to rubber tired vehicles has been held back by the lack of a tired unit capable of carrying as many as a large trolley car. This has been due to inability to produce a trackless vehicle of that size capable of making the necessary street intersection turns.
“It will be recalled it was the Fageol Brothers, who, in 1927, introduced the first transit or metropolitan type gas coach, namely, the box type body with motors inside instead of under the hood as in the old type vehicle. That style of design, in the past ten years, has become universally adopted on major operations.
“Some idea of the significance of this new Fageol development may be gained by such economic facts as the following, pointed out by Ross Schram, Sales Manager for the manufacturer:
1. According to the statistical record of TRANSIT JOURNAL, there were 75,777 urban public carrier vehicles in use December 31st, 1937, and 34,190 of these were street cars, mostly of the large capacity size, while many of the 25,614 motor coaches would have been purchased in larger capacity had there been an available unit.
2. Modern trolley car road bed and track cost per mile is $100,000 for double tracks.
3. The average expenditure per mile for trolley car road-way maintenance in American cities during normal times is 3½ cents per mile.
4. The reduction of fuel cost over gasoline, if Diesel-Electric power plant is adopted.
5. Tremendous sums and engineering efforts have been focused on the development of a new automatic transmission for large trackless gasoline units with questionable results thus far. In this new unit, as in other trolley coaches and Diesel Electric vehicles, there is immediately available the perfect answer to this quest.
6. The large capacity rubber tired trackless ‘street car’ of this type is no longer tied to a strip in the center of the street, and thus traffic weaving, the greatest of all street hazards, should be reduced to a minimum. Recent studies reported by the Director of the American Transit Association show that considering the full capacity of a single traffic lane as 100%, a second lane, where channelized traffic is not enforced is actually only 78% efficient; that in the third lane without channelized enforcement the efficiency is only 56% compared with the first lane. Thus is statistically illustrated the waste of street space caused in traffic in our large cities where automotive traffic is weaving in and out between street cars. Of course, it is impossible to furnish accurate figures on the increased safety if all public carrier passengers were enabled to load and unload from a large capacity public carrier operating adjacent to the curb, but such protection would tremendously reduce deaths and injuries in the street.”
Unlike most articulated buses that followed, the joint between the Super-Twin’s front and rear compartments only allowed for the vertical movement of the two attached coaches, no horizontal action was allowed with the turning being accomplished via coordinated action between the two steerable axles – one located at the front, the second at the rear.
The 1937 Alfa Romeo 110 AM-Macchi appears to have been the first to employ this concept of a vertically articulated transit bus. Several were built to accommodate high density routes, with a total capacity of some 180.
In 1940 the Stanga-Stanga-BBC, Type Isotta Fraschini TS40 trolley bus appeared, with the same approach (vertical articulation, steering axles on both ends).
Although the Twin Coach and the Italian articulated buses/trolleybuses only found rather limited applications, they cannot be considered unsuccessful. Twin Coach manufactured fully one-third of all the trolley buses manufactured in North America, manufacturing 670 trolley coaches during its 25 years in business. And of course articulated city buses are now extremely common, and seem to be becoming the default, due to their greater capacity.
The first fully articulated bus appears to be the 1946 Kaiser. And then in the US, there was the 1958 Kässbohrer Setra Continental Trailways Super Golden Eagle.
More on Twin Coach at coachbuilt.com
Funny how back then they decided you needed a vertical artic coach that was only 47 feet long but now you have highway coaches that are 45 feet long but no artic joints. Urban transit articulated buses are now 60 feet long.
Because of those middle axles, which were the driven ones. Even a small ramp or such would have lifted them off the ground, meaning no more movement. The two end axles were both just non-powered steering axles. The vertical articulation was absolutely essential with this design.
I’m always looking for evidence of early power steering, and this is one of the earliest mentions I have seen (I know there are patents that are quite older, but not sure about applications). Moreover, it appears as air assisted steering. Probably a dead end.
I found a pic of another early vertically articulated bus: an Alfa Romeo 110 with body by Macchi that, according to this russian website, was built in 1937.
http://www.gruzovikpress.ru/article/18232-sochlenennye-avtobusy-s-podvijnostyu-v-vertikalnoy-ploskosti-tandem-s-odnoy-stepenyu-svobody/
Wow.
Now I have to re-write all my articulated bus posts again? 🙁
Based on a Model T Ford a Dutch coachbuilder named Jac Met made this ‘articulated’ bus. Unfortunatly i do not have any further info on this vehicle.
No further info but a wonderful collection of pictures of this coachbuilder is found on flickr: https://www.flickr.com/photos/archiefalkmaar/albums/72157644744530624
In Dutch: https://conam.info/historie/carrosseriebouwers/carrosseriebouwers-beschrijvingen/504-jac-met-heerhugowaardalkmaar-1806-197
I should have know that it had been done earlier. And this is how to find out. Thanks; that’s a remarkable little bus.
And I loved all those old photos you linked to.
This bus was built on a Ford chassis beginning of the 1920’s for the Zaanlandsche Omnibus Mij, “Zaanland”, Koog aan de Zaan. I was apparently destroyed by fire in January 1927. The idea was to have a bus that with a higher capacity could pass the typical Dutch canal bridges. It looks like this one could really move vertically as well as horizontally.
The Municipal Tram of Amsterdam (GTA) had three Latil chassis adapted to three-axle articulated vehicles that could only bend vertically. They were adapted and bodied by a company called Geesink. They were built in 1924 but were not succesful and were withdrawn already in 1926. A description and pictures can be found on: http://www.traminfo.nl/busserie4.html
Great post – Coachbuilt is an impressive site. Twin Coach/Fageol made some really interesting buses. Jim.
Isotta made buses? This is like Pagani making them today. Wonderful. Actually, it’s only slightly longer than the gigantic ’20’s Isotta-Fraschini Gloria Swanson got about in in Sunset Boulevard, I reckon.
It would be quite the sight to see that Fageol do a U-turn, in theory not too much different to the Rivian from the other day.
Living in a city with the world’s longest tram network, I have to admit rubber-wheeled trolley buses are a better idea. I love trams, but they are impractically inflexible mixed in with modern traffic. One tiny corner of a car blocking the track – a minute-by-minute occurrence in heavy traffic – and it’s stuck till that car moves.
And living near a tramline, I gotta admit they’re noisy buggers, each sharp turn accompanied by the sound of a thousand little bats screeching. An electric TB would barely make a sound.
They also built MAN trucks under license after car production ended.
Very clever I’m impressed especially by the drivetrain and the vertical articulation they covered all the bases
I have just found your site while looking for more information on these types of buses.
As is often the case such designs were tried a lot earlier than one realizes.
In 1915 Fageol designed a trackless trolley system for the Panama Pacific Exposition and from that a 6 wheel Model T Ford with the rear system was developed and was used extensively throughout the USA.
A second chassis hinged at the rear of the normal Ford chassis with the rear axle able to steer enabled the Ford to carry 10 to 12 passengers. The unique feature was that the bodies were only attached at one point on the front and rear chassis frame so vehicle gave a smooth ride to the passengers. The system was called an Autoport it was used in Holland in Ford TT Truck form after the war and a Zaanland bus company operated a fleet of the buses in the 1920’s. They were ideal for the streets of the city. I have several photo’s of these vehicles which I have been investigating for several years after I found an original brochure from an American company building these in 1917.
I welcome you! And the same author who wrote the article
http://www.gruzovikpress.ru/article/18232-sochlenennye-avtobusy-s-podvijnostyu-v-vertikalnoy-ploskosti-tandem-s-odnoy-stepenyu-svobody/
I am currently working on a book world history of articulated buses and trolleybuses. Who wants to receive my book and is ready to help me with the materials, you can answer me by mail
loban53@gmail.com
Thank you