(first posted 2/27/2015) Here’s a thought for the day: Ever since man achieved powered flight, pilots and engineers have dreamed of taking off and landing vertically, but there has only been one successful vertical take-off jet aircraft. It is now over fifty years since it first flew, the newest examples are over a decade old, and it has not been directly replaced. It has achieved success in combat and peacekeeping roles, operating from airfields, aircraft carriers and gaps in the trees. At its heart is one of the world’s most famous jet engines, and an adaptation of it that is, like many great inventions, simple, effective and seemingly unimprovable.
And its lead engineer was a man whose apprenticeship started before the First World War, in a carpenter’s shop, and whose earlier career covered aircraft from wooden gliders to the Hawker Hurricane and Typhoon–a quiet Englishman who turned to the idea of vertical take off and landing just to save his business from extinction.
Most Brits can recognise five aircraft–the war-winning Spitfire and Lancaster; the Boeing 747 jumbo jet; the supersonic Concorde; and a humble little jet that spent most of its time far from home, away in Germany, in Belize, in Afghanistan, or at sea. People who don’t know the difference between a Eurofighter Typhoon and a Tornado, between an F-16 and a MiG, or between an Airbus A320 and a Boeing 737, know and smile at the ‘Jump Jet’.
So what was special about it? Simply, it behaved like no other aircraft–it took off and landed vertically, could turn on a sixpence, and literally spin round in a circle. It could fly backwards, and then take a bow at the end of an airshow piece. With thanks to our friend and useful chap, Big Paws, let’s look at one of Britain’s many moments of engineering genius–the Hawker Siddeley Harrier.
The Harrier (was there ever a more appropriate name for an aircraft?) was the result of a typically British combination of circumstances. First, that great British invention the jet engine had been, if not perfected, at least brought to a fully usable and practical state through the work of Sir Frank Whittle (another great British engineer) and the Rover Car Company by the end of the Second World War.
Second, by the late 1950s, the UK’s Royal Air Force (RAF) was planning to move away from a large fleet of manned fighter jets to missile-based defence supplemented by a single multipurpose supersonic fighter, known as TSR2. This was being developed by the British Aircraft Corp (BAC), one of the two companies into which the British aircraft industry was consolidated by the 1960s.
The wide ranging capability of the TSR2 (and the projected cost) meant that BAC secured the lion’s share of the UK Ministry of Defence development budget, and consequently Hawker Siddeley Aviation, the other consolidation, was left facing the potential run-down of its domestic military business. This included the Hawker Siddeley group’s famous Hawker Aircraft division, the builders of the Hawker Hurricane of Battle of Britain fame (another CC is due, to mark the 75th anniversary of the Hurricane, not the Spitfire, winning the Battle of Britain and ensuring that Britain would stay in the war long enough for the USSR and USA to be drawn in). The government’s focus on TSR2 meant the end of development of the division’s key product, the Hawker Hunter jet fighter.
In response to this threat, Hawker turned to new projects and ideas, including the concept of a vertical take-off and landing (VTOL) plane which the Northern Irish company Short Brothers had recently shown was becoming feasible. After the Second World War, and the development of practical jet power, the pace of experimentation with various VTOL ideas escalated in Europe and the USA–all of which had failed to get off the ground (sorry, I had to) until Shorts’ prototype SC1, known informally as the Flying Bedstead, hovered successfully in 1958. SC1 was designed around 5 RR jet engines–4 working downwards for lift and one horizontally for forward thrust.
At the same time, starting in 1957, Bristol Siddeley engines, the Hawker Siddeley Group’s jet engine division, was developing the new Pegasus mid power jet turbine engine. The genius that brought together Shorts’ concept and Bristol’s engine was Sir Sydney Camm.
Camm (1893-1966) worked at Hawker from 1923 to 1965, rising from Draughtsman to Chief Engineer, and to Director by 1935. He was a prolific designer who successfully and prolifically innovated–from wooden biplanes, to metal monoplanes and then jets–and is the credited lead engineer of such landmarks as the Hurricane, Typhoon, Tempest and the Hunter before the Harrier. He was truly one of the greatest aircraft engineers Britain has ever produced, and sadly little known today, overshadowed by names such as Sir Barnes Wallis and Reginald Mitchell.
Hawker’s and Camm’s clinching piece of ingenuity was the use of jet nozzles that could be vectored to send the Pegasus’ thrust straight backwards for level flight, and vertically downward (in fact, up to five degrees forward of vertical) for take-off and to control landing. This meant only one engine was needed, rather than the five engines on Shorts’ Flying Bedstead: simple but brilliant. The nozzles simply rotated through ninety degrees, allowing any angle and thus any speed from zero to almost the speed of sound, with rapid acceleration and, uniquely in a warplane, rapid slowing.
The engine is fitted with two air intakes and four vectoring nozzles for directing the thrust generated: two for the bypass flow and two for the jet exhaust. The forward nozzles were fed off the high pressure turbine, with air that had not been through the combustion chambers, and the rear nozzles from the jet exhaust. There are several smaller reaction nozzles, in the nose, tail and wingtips, for balancing during vertical flight. The aircraft has two landing gear units on the fuselage and two outrigger landing gear units, one on each wing tip.
The other benefit of the nozzles was the ability to achieve a short take off–not only less fuel-hungry than a vertical takeoff, but also allowing the Harrier to take off from, for example, small clearings in woodland, helicopter pads, motorways and the like with larger payloads. Now it was a V/STOL aircraft. Such capability made it ideal for the defensive ground war that was expected to follow a Soviet invasion of West Germany. And, finally, combining the short take off with a ‘ski jump’ allowed a Naval version, the Sea Harrier, to operate from the decks of the Royal Navy’s Invincible class aircraft carriers without catapult launchers or arrester systems–despite HMS Invincible and her sisters HMS Ark Royal and HMS Illustrious being only a quarter of the tonnage of US Navy carriers.
Inevitably, the development of aircraft is a slow process of development and testing, and for something as revolutionary as the Harrier, it was particularly protracted. Shorts had demonstrated their prototype in 1958, and Hawker had prototypes (designated P1127 and known as Kestrels) flying in 1962. In February 1963, trial landings on HMS Ark Royal were made, and international interest began to generate.
A joint assessment exercise with the West German and American air forces in 1964 tested a fleet of six Kestrels, in an attempt to agree to a common specification for the three nations. A failure to reach consensus left the Brits to go it alone, with a foray with the dead end of a supersonic V/STOL craft on the way, before the RAF finally ordered six pre-production Harriers in 1966. These featured Rolls-Royce’s latest engine, the Pegasus 6, and were delivered in 1968 for extensive testing and proving.
In 1968, Bristol Siddeley aero-engines (but not Hawker) was sold to Rolls-Royce (at the time a single company incorporating the original car division and the aero-engine business, which had been assigned to Rolls-Royce in the war from the original developer, Rover), who adopted the Pegasus as their own and developed it right up to the Pegasus 11 that it is still in the catalogue, producing three times as much power as early prototypes.
Squadron Service of the Harrier began with No 1 Squadron, RAF, in April 1969, and then in May 1969 the plane really jumped into British national consciousness when Harrier XV744 was entered in a newspaper sponsored London–New York air race. The RAF Harrier beat the supersonic Phantoms (a version of the American McDonnell Douglas F4) of the Royal Navy’s Fleet Air Arm. The trick was that the race was ‘downtown to downtown’, from the Post Office Tower in London to the Empire State Building in New York, and the Harrier exploited this by flying from a railway goods yard outside St Pancras mainline railway station in the heart of London to the Bristol Basin in New York, while the Phantom had to land at Floyd Bennett Air Station. The winning time was 6 hours 11 minutes, achieved with a total of four air-to-air refuellings.
Through the 1970s, the RAF continued to slowly develop and improve the Harrier. A two-seat version was developed, initially as a trainer but later developed into a front line aircraft. But the Harrier had attracted attention elsewhere–from the US Marine Corps, no less.
https://www.youtube.com/watch?v=rCSAXixGeSo
The Harrier was seen as ideal for the Marines–helicopter like agility, fighter jet like performance and weapon delivery. The US had taken six Kestrels for trial in 1966, but the fleet order did not materialise until 1970–for 110 Harriers (designated AV7A) for the Marines Air Corps. In 1969, Hawker had entered a fifteen year agreement with McDonnell-Douglas giving MD exclusive rights to the Harrier in the USA and access to all the technology but, ultimately, the Marines’ Harriers were built in the UK, with minimal differences from the RAF specification, bar the newer Pegasus 103 jet.
All first-generation Harriers and Sea Harriers were built in the UK, mainly at the Hawker factory in Kingston, southwest of London, with major components supplied by the Hawker Siddeley factories at Brough in Yorkshire and Hamble, near Southampton (also home to the Spitfire). First flights for all aircraft were from Dunsfold, further out from London than Kingston, and now the home of the BBC’s Top Gear. Harrier II production was divided between the UK and USA, with final assembly and flight testing of most USMC aircraft being at the McDonnell Douglas/Boeing plant at St.Louis, Missouri. RAF Harrier IIs were mostly assembled at Kingston and flown from Dunsfold. Rolls-Royce at Bristol supplied all the Pegasus engines, with some of the components for the AV8B being supplied by Pratt & Whitney.
By 1973, Hawker and MD were cooperating on fitting a Harrier with Rolls’ new and more powerful Pegasus 15. However, the greater size of the engine meant that it could not be retrofitted to the existing aircraft, and development turned instead to a cheaper solution–new wings on the same airframe, to give greater payload and performance.
In the 1980s, as the original Harriers reached the end of their lives, British Aerospace (the name for the complete amalgamation of all Britain’s aircraft builders, and now known as BAe Systems) and McDonnell Douglas (later Boeing, of course) collaborated on the second generation Harrier: Harrier II in the UK and AV8B in the US. Wingspan was now up to thirty feet, from the twenty-five feet of the earlier planes, and thrust was 23,500lb, up fifty percent on the early Kestrels. Although speed was down, to 660mph, payload and range were up.
In total, over 820 Harriers were built. Outside the UK and the US, the plane was sold to Spain (as the Matador); Thailand; India, whose Navy operated thirty from second-hand former Royal Navy carriers; and Italy. British operations ceased in 2010, with the simultaneous retirement of the Invincible class carriers, and in December 2010, a final RAF flight of sixteen Harriers flew over the Norfolk and Lincolnshire airbases associated with the Harrier over the years, while a final flight of four Sea Harriers was launched from HMS Ark Royal in the North Sea. The US Marines will persist with Camm’s brainchild until the F35B STVL (short take off, vertical landing, but not vertical take-off) variant is introduced into service in 2016. To that end, the Marines purchased seventy-two surplus RAF Harriers for $180m in 2011, for frontline use–probably the cheapest and best value jets in the US military!
Harriers saw action in the NATO and UN operations in the former Yugoslavia in 1992-95, in the British intervention to end the civil war in Sierra Leone in 2000, in the Iraq war and in Afghanistan.
But for many in Britain, the most prominent service memory of the Harrier came just about as far away as it is possible to get from home–in the 1982 Falklands War with Argentina for control of what Britons call the Falkland Islands and Argentineans call Las Malvinas. Let’s not debate the rights and wrongs of the claims and the conflict here on CC; let’s just note the RAF and Fleet Air Arm deployed a total of ten Harriers and twenty-eight Sea Harriers on HMS Invincible and the older carrier HMS Hermes to the South Atlantic; they flew 1,561 sorties, and ten were lost, mostly to anti-aircraft missiles. The RAF planes were used for ground attack; the Fleet Air Arm for air defence. Between them, they shot down twenty Argentinean Mirage and Dagger jets.
No Harriers were lost in aerial combat against the faster and more heavily armed Argentine Mirage jets, in part because of their ability to direct the jet thrust downwards and thus suddenly slow or even stop, causing the pursuing jet to overshoot. And an early sortie from HMS Hermes, to bomb the airport at Port Stanley, led to the embedded BBC correspondent Brian Hanrahan reassuring a nervous TV audience by uttering what has become one of the best known quotations of the 1980s. “I can’t say how many Harriers took part in the raid, but I counted them all out and I counted them all back in”
Another quotation sums up the Harrier very well. Sir Tommy Sopwith, one of Britain’s greatest aviation pioneers and the man who lent his name to the Sopwith Camel, Britain’s favourite First World War aircraft, said in 1979, “I still don’t believe the Harrier. Think of the millions that have been spent in America and Russia, and quite a bit in Europe, and yet the only vertical take-off aircraft which you can call a success is the Harrier. When I saw the Harrier hovering and flying backwards under control, I reckoned I’d seen everything.
But the best Harrier quotation has to be that from the senior test pilot Bill Bedford. “It is easier to stop and land than it is to land and stop.” Not many pilots can say that.
And the TSR2? It was cancelled by the UK Government in 1964, with just two prototypes built.
So, let the Harrier take its bow!
Pretty much a real-life Transformer. The plane who can do almost everything pretty well. Sort of a Jeep Wrangler of the skies!
Great article. Thanks.
Speaking of the Falklands War, if these things had been able to float, the war could have had a different outcome:
Don’t mention the war.
From what I’ve heard about F-35 flight restrictions (e.g., no thunderstorms) & cost overruns, I’d say the Harrier’s job is safe for the time being. But the F-35, like certain banks, is too big to fail; Lock-Mart can milk that contract indefinitely.
The Dornier Do31 used the Pegasus too, but it was canceled. I saw one in front of the Deutsches Museum, München.
The promise of the F-111 was a major reason the TSR-2 was canned. Like the F-35, it was a foolish attempt to develop a one-plane air force, sponsored by the micromanaging Lard-Hair SECDEF, Robert MacNamara, formerly of Ford. I say it can’t be done, except by accident (e.g., P-38, Mosquito, F4 Phantom). The Navy F-111B was canceled & replaced by the F-14, leaving the USAF with what ultimately became a successful long-range strike aircraft. The Aussies loved theirs, but now need to make the F-35 fill its boots.
Excellent article, necessarily “Britcentric”. Roger writes, “…that great British invention the jet engine…”. Both Whittle and Hans von Ohain in Germany successfully ran jet engines in 1937, probably unaware of each other. The first successful flight of a pure jet aircraft was in September 1939 by the Heinkel He178, and the first effective combat jet aircraft was the iconic Messerschmidt Me262.
The Dornier 31 mentioned above was the so-far only VTOL transport jet. Two prototypes were built and flown. Messerschmidt, Heinkel, and Bölkow collaborated to build the VJ101, which was the first VTOL jet to exceed Mach 1. It first flew in 1963, about a year after the first Harrier prototypes. In the early 1970s, VFW built and test flew the VAK 191B, which used the Rolls-Royce/MAN Turbo RB.193-12 vectored thrust engine.
While the 3 aircraft above were successfully flown, all 3 programs were eventually cancelled, due to a combination of high costs, changing specifications, and politics. All are displayed in German museums. Only the Harrier was developed to a long-running production and service life.
Excellent, detailed review of a milestone aircraft. Two points – more Hurricanes participated in the BoB (Spits had a better press agent?!), and the Harrier is The Loudest Thing In The World. Alway love to see them demonstrated at air shows.
What was great but unsung about the Hurricane was logistical: compared to the Spitfire, it was much easier to repair battle-damage on site, with its fabric-covered framework fuselage, familiar to most RAF flight mechanics. Thus, high availability rates.
But what really won the BoB was Dowding’s Fabian tactics, wearing down the Luftwaffe over time rather than looking for a massive single victory as many other RAF leaders wanted. He recognized that air warfare was attritional, but this brought on his early retirement, along with his excessively blunt manners (though he was respected by his staff). Tact will never limit one’s career.
The British also had and excellent repair/overhaul capability for their aircraft, meaning they always had high serviceability rates.
The command and control system devised by Dowding was brilliant and a major reason for the RAF being able to hang on.
Yes, I forgot to mention that. Even though Dowding was personally stodgy & eccentric, so far as I know, he was more forward-thinking than anyone else of similar rank in the prewar period. BTW, New Zealander Keith Park deserves mention as well.
Unfortunately, the US failed to learn from this by Dec 1941, & did nothing to deploy its radars in the same systematic fashion. I still wonder, however, if anyone would’ve caught on in time because of widespread illusions about Japan; the only American general I’m aware of who expected a Japanese attack was of the Alaskan Command, Simon Bolivar Buckner Jr.
Nevermind the yanks.
Didn’t the commanding Officer of Force Z HMS Repulse and Renown..Tells his Officers and ratings that the “Japanese couldn’t build planes except out of Rice paper and that they had poor eyesight”..
Well…Who had the last laugh out of “that one??
Oh, and the Japs can’t build Motor cycles either BSA, Norton, and Triumph.
pffft.
“….But what really won the BoB was..”.
You named the wrong man..It was Goering who “won” the BoB.
And if the Nazis hadn’t bothered with the Blitz..they’d have won it.
Which makes the later actions of Bomber Command even more of a mystery.
That’s the Robert E. Lee/Irwin Rommel effect: Nothing makes you look good like an incompetent enemy. Goering was a piker, totally outclassed by Dowding. Thankfully for the Allies, he outranked the real professionals in the Luftwaffe. But the Germans lost on technical grounds too; they needed an effective long-ranged fighter, which the Me110 failed to be. Range gives incredible flexibility to the attacker, e.g. the Zero scourge.
Douhet’s theories on strategic bombing sank deep into Anglo/American air officers.
The Hurricane excelled at all roles,night fighter,intruder,a tank buster in the desert,at sea protecting convoys,in the far east and many were sent to Russia.It also did photo reconnaisance
As an aviation article idea for the site, I would enthusiastically recommend a piece on the “Hurricats” — an absolutely barking mad idea born of desperation and a totally imbalanced brass/brains ratio that actually worked.
“… and the Harrier is The Loudest Thing In The World.”
I believe the Russian TU-95 “Bear” would disagree with that statement.
Never seen/heard a Harrier take off in person but if it is louder than a KC-135 taking off fully laden using maximum military power, then it is indeed one loud aircraft.
The “stovepipe” 135s were plenty loud, but they had nothing on a J57 powered B-52. Think of two of those A-model 135s taking off in formation.
By far the two loudest things I’ve ever experienced were a very lightly loaded B-52G taking off from Springfield (IL) Capital Airport (8000′ of runway to play with instead of the usual SAC-issue 12000′) and the national anthem prior to a Blackhawks game at the old Chicago Stadium. (17,000 screaming fans accompanied by an operatic tenor and one of the largest pipe organs ever built)
the SNJ/Harvard is not that Quiet either.Supersonic prop tips indeed.
Avro Vulcan is even louder
Met a couple Marines who flew them. They were amazing. But I am told your world could turn to garbage really really quickly when flying one. From what I remember it was very tough to recover and they were unforgiving.
Seems like something that should be upgraded for years more.
My understanding (I’m not a pilot or aviator) is that the early Harrier was tricky, particularly in landings, which were kind of a three-handed job. (“By the way, how do you manage thrust-vectoring while also dealing with the throttle and conventional control surfaces?” “Talent…”)
Seems like the Harrier has a record of being more prone to accidents than other aircraft, as well as being even more maintenance intensive than a normal fighter. Combined with the tricky flying skills required, it all seems plausible.
OTOH, with the rapid advances in computer controls, it would seem like the Harrier would be an ideal platform for the latest upgrades, much like the quite treacherous Northrop YB-49 ‘Flying Wing’ would eventually be made serviceable as the B-2 stealth bomber.
And being a very loud aircraft sounds logical, as well, considering the echo of the jet exhaust bouncing off the tarmac.
The Harrier and the SR-71 were both flying at an air show I went to in the 80’s at Camp Pendleton. I’ll never forget either demonstration. Really an amazing machine. Great write up.
I was an Illustrator (graphic artist) in the 9th Strategic Reconnaissance Wing – wing headquarters squadron at Beale AFB from 1969-1973. The Blackbird was our plane.
Here’s an illustration in 1971 I did for one of my buddies who was a jet engine mechanic on those P&W J-58s.
No doubt inspired by the Ed Roth Fink Rod art style of the time!
No doubt inspired by the Ed Roth Fink Rod art style of the time!
Nice!
Wibault in France was the originator for vectored thrust,but failed to enthuse the armee de L’air.
Although the Armee de l’Air did pursue VTOL aircraft for a while in the ’60s, albeit always using lift-jets, which turned out to be a waste of time.
Roger, you keep hitting upon favorites or introducing me to absolute marvels of engineering. It’s addictive.
Within the first two paragraphs I immediately started to think of the Falkland Islands. I was quite young at the time, but remember seeing a clip of a Harrier on the news and being utterly captivated with it. Watching all these video clips are on the agenda for this evening.
For quite a few years, my mother-in-law worked in the blueprint room at McDonnell-Douglas in St. Louis – she will undoubtedly enjoy seeing this article.
This Big Paws you speak of seems like quite the good guy. My thanks to him also.
Thanks Jason. Planning a couple more of left field topics that I hope some in CC will enjoy.
It’s loud; saw it at the Reno Air Races in ’97. FIFI, only flying B-29 was there as well. The Harrier was 5 times as noisy as the 29. FIFI sounded like a Cessna taking off compared to the Harrier.
Back when it was Speedvision, they had one day a week devoted to airplane topics. Had an hour long program on the Harrier, all the early troubles and how they solved them. Something about the Russian version a YAK of some number, and how that never caught on. Even an interview with Bill Bedford, the main test pilot. Really interesting program you’d never see anywhere else. Had to have been sourced from some British TV program.
They also had an hour on the TSR-2; I never knew how BIG that thing was. The picture at the start of the CC is the first time I’ve seen an actual human being next to it. I always thought it was the size of an F-111. But it’s more like a B-1….
They had a really interesting mix of topics on Speedvision, then Fox bought it and became NASCAR ALWAYS….
One good development that came out of the TSR-2 was the Olympus engines used by the Concorde.
The Avro Arrow was another hope dashed; its cancellation was a disaster for Canadian aerospace (and a boon for NASA staffing). But I suppose Bombardier is evidence Canada has recovered somewhat.
Boeing was successful in getting Congress to apply a 300% duty against the new Bombardier C series passenger jets in 2017. The tariff was removed in 2018, but in the meantime Bombardier had to sell a controlling interest in the program to Airbus to salvage it.
The Bombardier C series is now the Airbus 220, to be built for the US market in Alabama. So it goes.
There was a pretty good episode of the Harrier on “Wings” that used to run on the History Channel back in the mid 90’s when it used to actually show history. Somewhere I have an old VHS tape of it.
An excellent writeup of a singular aircraft. Well done.
It is interesting that after the Harrier proved what it could do, nobody else ever really duplicated it, or came even close. Well, I suppose the V22 Osprey mimics it’s vertical jump, but that one is a completely different animal.
One minor correction to a fine overview: The TSR.2 was not a fighter in the sense most people use that term, but rather a supersonic strike aircraft (a medium bomber, in effect) with a secondary reconnaissance role. The TSR designation stood for Tactical Strike and Reconnaissance, in fact. The TSR.2’s intended purpose was indeed very similar to the F-111A/C/D/F, but there was no thought to air-to-air combat even as a secondary role.
Part of the reason the FA.2 Sea Harrier did so well in the Falklands, incidentally, had little to do with the aircraft (which was clever, but had many limitations) and more to do with the fact that the British had just gotten the latest U.S. AIM-9L Sidewinder, the first really workable all-aspect heat-seeking air-to-air missile. Traditionally, IR missiles need to see a hot exhaust pipe for best results, but the -9L and later marks had much more sensitive seekers and could be used with decent results at almost any angle. This was completely devastating to opponents who hadn’t trained for that; as you can imagine, all-aspect missiles require some major rethinking of tactics.
Incidentally, if you’re interested in aviation stuff, I would recommend all of you check out Greg Goebel’s Air Vectors site (www.airvectors.net). I have no affiliation with Greg (other than sending him the occasional complimentary email), but it’s like Curbside Classic or Ate Up With Motor for aircraft.
thanks for the airvectors link
I’m a retired Marine, and had personal and professional interactions with Harriers and their pilots at various times during my career. My roommate at TBS (The Basic School) in 1990 became a Harrier pilot. A few years later he had to eject shortly after take off due to engine failure. The investigation discovered a ground crew member was engaging in vermin control with a slingshot, and caused a FOD situation. At sea a few years later, a pilot on our deployment had to punch out due to a similiar situation. I don’t think they discovered the exact cause. The F-18 guys would mock Harriers, “one pilot, one engine, one bomb, one hour,” referring to AV-8s relatively limited payload and fuel.
As has been mentioned, I was told they could be unforgiving in hover mode, and their attrition rate is high compared to more modern designs. They are also less user friendly to maintainers, being much less modular than current practice, and requiring more man-hours per flight hour. Operationally, they rarely have operated from land based facilities where the V/STOL capability is useful. At sea, when working in a mixed rotary wing and AV-8 group, the helicopter and V/STOL operations are incompatible making for added difficulty when operating from the same deck.
Finally, some points regarding the Falklands War. It is uniformly acknowledged that the Argentinian pilots were highly skilled, and courageous in the extreme. But, they were operating at the very edge of their operational range, and flying as low as possible to avoid radar. Therefore, once they were found by the British, they were at a significant “energy” disadvantage when engaged by the Harriers, and had very little time/distance to effectively evade and escape.
Interesting comments. If Harriers are that vulnerable to FOD, it makes me wonder how well they work at forward bases in Europe, which was one of the British arguments for it: No Runways.
Russian fighters have been designed to be much more forgiving of debris (inlet doors on MiG 29s), & have thick tires more usable on unpaved runways. The A-10 seems the only American type following this philosophy, and the USAF wants to dump it.
I don’t know that the Pegasus is more susceptible to foreign object damage than other jet engines, but FOD is dangerous in general. If you have a single-engine aircraft that’s also relying on the engine for a good portion of its lift on takeoff and landing, any engine problem is more likely to be catastrophic. The A-10 and most recent Russian fighters have twin engines and aren’t V/STOL, so while losing an engine is bad, it’s not automatically a punch-out-and-pray scenario.
FOD is even an issue •inside• aircraft; mechanics have to be incredibly anal about leaving tools etc. in the fuselage, lest they drift around & foul a critical flight control, so their toolboxes have recesses for everything. No doubt this lesson was learned the hard way generations ago.
Indeed, an auto mechanic once left a giant screwdriver inside my car’s engine compartment, but no harm done; I just returned it in his mail slot.
Considering that it can hover, why didn’t Hawker name it the Hummingbird? It’s even alliterates well. Those guys can fight! I once saw one peck a hornet to death. And if you have a honeysuckle bush in your yard, you’ll see them every day there isn’t snow on the ground until they migrate.
No hummingbirds in Britain – but you’ll see plenty of Harriers hovering over fields.
sadly not ;we have moronic game keepers who poison raptors to please the equally moronic shootin’ types.
As originally envisioned, the JSF (F-35 Lightning) was to have STOL capability. I’m not aware if that was ever achieved or not.
Is that Airfix kit picture a hint to CC-in-scale? 🙂 I haven’t built a plane for well over 50 years, but you had me looking up availability and pricing…….
Once again, a fantastically-written article about something I wouldn’t normally be interested in. Amazing to think that Sir Sydney Camm (of whom I had never heard) was responsible in part for so much aeronautical progress – and yet he’s pretty-much unknown. Not Fair!
As a kid in the 80s I read about the Harrier often. How it could vector its exhausts in a digfight to turn in a smaller circle than a pursuing fighter. How the updated Av8B had a cockpit with 360 degree visibility. I made a couple of plastic models of them in the day. I saw them perform at air shows a couple of times, including flying backwards. Pretty cool to watch.
(Too bad that so many awesome things people build get used for killing other human beings though)
Vectored thrust is bringing a new dimension (pun intended) to air combat!
You know what’s nice about having a Harrier as a gate guard? You just tell the pilot to land it on the concrete display stand and set the brake! No muss, no fuss!
My maternal grandfather worked on the Flying Bedstead – though he’d only credit himself with designing a single jubilee clip. It’s a long time ago now, but I seem to recall him telling us that at its maiden flight, the concrete apron it embarked from, bent before it cracked.
On the subject of loud – I have no real aviation experience to speak of BUT I was present at the 1997 FIA GT race (4hrs Silverstone) with 7 McLaren F1 and 4 Panoz GTR-1 entered, and at several points in the race, most of those came past together
I’d be interested in seeing a more direct comparison of the Harrier to the Boeing V-22 Osprey. I realize the Osprey has different capabilities, but it does also, functionally, act as a VTOL aircraft. And it took a long time (and the lives of a few test pilots, I believe) to figure out how to make the process of changing from helicopter to plane and vise versa go smoothly.
Jump-Jets over the Florida Keys? True…or True Lies?
https://www.youtube.com/watch?v=5m-S-vRuKoY
And over the city:
Great article.
The tiny item I propose, is, the high pressure is the rear nozzles, after combustors, and the front bypass fan is low pressure and feeds the front nozzles. From conventional turbine lore.
Non-bypass fans are pure high pressure, and low efficiency. And early vintage.
I apologize, I am an auditor by trade and am sensitive to nits.
https://en.wikipedia.org/wiki/Rolls-Royce_Pegasus#/media/File:Pegasus-engine-diagram.svg